Careers Beyond the Academy

Joel Kastner

Professor, Center for Imaging Science and School of Physics & Astronomy
Rochester (NY) Institute of Technology
jhk@cis.rit.edu

Chair, Committee on Employment
American Astronomical Society
https://aas.org/comms/committee-employment
A little bit about me

• Have backed into almost everything I’ve ever done
 • I am an opportunist

• BS Physics, U Md. (1980)
 • Freelance musician in DC area, early 80’s

• Part-time astronomy grad student, U Md., early 80’s

• Transferred to UCLA in 1985
 • Mainly because I was not going to be separated from my future wife, who was about to go to USC!
 • PhD in Astronomy, 1990 (mass loss from evolved stars)

• Postdoc at MIT Haystack (radio) Observatory, 1990-93
 • Nearly took 2nd (NRC) postdoc at NRL...said yes, then put off start...then...

• Research staff at AXAF (later Chandra X-ray Obs.) Science Center at MIT, 1993-99
 • Made short list for Dept of Physics faculty position at U. Cincinnati, 1997
 • Made short list for remote sensing faculty position at RIT Center for Imaging Science, 1998

• (Ultimately) hired onto RIT Center for Imaging Science faculty in 1999
 • This time, to do astronomy (CIS Director had SOFIA funding)...and teach imaging science...whatever that is...

• RIT & Rochester, NY: happily ever after, etc.
 • Well, apart from having to scramble to maintain funding for my graduate students, the occasional postdoc, travel/computers/page charges, and my own summer salary
A little about my former (PhD) students

- **Jinqiang (Dylan) Li, 2004, imaging science**
 - Thesis: subpixel positioning of X-ray photons detected by Chandra’s CCD spectrometer
 - Worked for Agilent, Qualcomm, and now Logitech (Austin, TX); Principle Engineer

- **Sue Hojnacki (deceased), 2005, imaging science**
 - Thesis: automated spectral classification of X-ray sources detected by Chandra’s CCD spectrometer
 - Kodak remote sensing staff during PhD; then postdoc at RIT, JPL; then remote sensing researcher at LLNL

- **Bo Mu, 2006, imaging science**
 - Thesis: automated spectral classification of X-ray sources detected by XMM’s CCD spectrometer
 - Fairchild Industries, then Quanergy (Silicon Valley)

- **Young Sam Yu, 2009, imaging science**
 - Thesis: the first (Chandra) X-ray gratings spectrum of a planetary nebula
 - Samsung; then Korean Astrophysics & Space Institute (tenure-track astronomer)
A little about my former (PhD) students (cont.)

- Rudy Montez, 2011, astrophysics (1st graduate of RIT’s AST PhD program)
 - Thesis: X-rays from planetary nebulae
 - Postdoc at Vanderbilt U.; now on science staff of Chandra X-ray Center’s Director’s Office
- Dave Principe, 2014, astrophysics
 - Thesis: X-rays from nearby, dusty young stars
 - Postdoc at U. Diego Portales (Chile), then MIT’s CXC; now on research staff of MIT’s CXC
- Valerie Rapson, 2015, astrophysics
 - Thesis: IR observations of nearby protoplanetary disks
 - Outreach Astronomer at Dudley Observatory & Science Museum (Schenectady, NY)
- Marcus Freeman, 2015, astrophysics
 - Thesis: 3-D modeling of planetary nebulae
 - Left science world to work for Bowst (Portsmouth, NH): “custom software design & development”
- Kristina Punzi, 2018, astrophysics
 - Thesis: mm-wave and X-ray observations of nearby young stars
 - Non-tenure track, long-term faculty position at Wellesley College (Whitin Observatory Manager, lab instructor)
Before we go on: congratulations

Postdoctoral Acceptance Rates for New Astronomy PhDs, Classes of 1978 through 2016

Data presented are 2-year averages and are limited to PhDs who earned their degrees from a US university and remained in the US.
AAS Job Register: job posting stats
compiled by Julia Kamenetzky (Westminster College) for AAS EC

AAS Job Register: job posting stats
compiled by Julia Kamenetzky (Westminster College) for AAS EC

![Graph showing job register ads per new U.S. PhD from 1980 to 2015. The graph includes lines for all jobs using UMI, all jobs using SED to UMI average, and all jobs using AIP to UMI average.](image-url)
AAS Job Register: job posting stats
compiled by Julia Kamenetzky (Westminster College) for AAS EC
AAS Job Register: job posting stats
compiled by Julia Kamenetzky (Westminster College) for AAS EC

Key:
G = pre-doc
PV = postdoc
TT = tenure-track
NTT = non-tenure-track
RS = research support (engineering, tech staff, etc)
MO = management/other
AAS Job Register: job posting stats
compiled by Julia Kamenetzky (Westminster College) for AAS EC
AAS Job Register: job posting stats
compiled by Julia Kamenetzky (Westminster College) for AAS EC

Key:
G = pre-doc
PV = postdoc
TT = tenure-track
NTT = non-tenure-track
RS = research support
(engineering, tech staff, etc)
MO = management/other
Statistics on Non-Academic Careers in Astronomy

• Compiled by Rachel Ivie
 • American Inst. of Physics Statistical Research Center
 • Stats/info in next 7 slides presented at 231st meeting of AAS in DC, Jan. 2018

• Sources:
 • AIP data on initial outcomes of recent PhDs, collected within one year of graduation
 • Data collected from AAS members by AAS Demographics Committee
 • 2 surveys, 2013 and 2016
 • Random sample of AAS members in the US (statistically representative)
 • Covers education, employment, postdocs, and demographics
 • Another planned in 2018 [not sure of status]
 • Longitudinal Survey of Astronomy Graduate Students (funded by NSF)
AAS Demographics Committee

• Collected by AIP in 2013, 2016, planned for 2018
• From a random sample of AAS members in the US (statistically representative)
• Covers education, employment, postdocs, and demographics
Next 5 slides: stats from AIP 2018 report on initial employment in astronomy

• Rachel says: sign up to receive updates at https://www.aip.org/statistics
Employment Field of Astronomy PhDs One Year After Degree Classes of 2015, 2015 & 2016 Combined

Percent

100 90 80 70 60 50 40 30 20 10 0

Postdoctoral Position

99

Potentially Permanent Position

32

68

Employment in physics or astronomy

Employment in Other Fields

Computer software/Data science
Engineering
Business or finance
Other sciences
Education
Other
Type of Employment of Astronomy PhDs by Employment Sector One Year After Degree, Classes of 2014, 2015 & 2016 Combined.

<table>
<thead>
<tr>
<th>Sector of Employment</th>
<th>Employment Type</th>
<th>Postdoc %</th>
<th>Potentially Permanent %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic</td>
<td></td>
<td>72</td>
<td>25</td>
</tr>
<tr>
<td>Private</td>
<td></td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Government</td>
<td></td>
<td>23</td>
<td>8</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Starting Salaries of Astronomy PhDs, Classes of 2014, 2015 & 2016 Combined.
As of Jan 2018: Employer of US AAS Members with PhDs, 2016

- University or 4-year college: 55%
- Govt. lab or research facility: 16%
- Observatory: 9%
- Research Institute: 8%
- Other: 8%
- Industry: 3%
<table>
<thead>
<tr>
<th>Activity</th>
<th>University, 4-year college</th>
<th>All other sectors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Teaching</td>
<td>39</td>
<td>238</td>
</tr>
<tr>
<td>Devising, conducting observations</td>
<td>18</td>
<td>112</td>
</tr>
<tr>
<td>Theory, N-body simulations</td>
<td>12</td>
<td>78</td>
</tr>
<tr>
<td>Instrumentation, telescope design</td>
<td>6</td>
<td>35</td>
</tr>
<tr>
<td>Data visualization, mining</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>Education or public outreach</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Management, administration</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Multiple activities</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>Data analysis</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Laboratory astrophysics</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Other research</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>Software, IT</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>8</td>
<td>52</td>
</tr>
<tr>
<td>Total N</td>
<td></td>
<td>616</td>
</tr>
</tbody>
</table>
AIP Longitudinal Survey of Astronomy Graduate Students

• Originally a collaboration between AAS and AIP
• Funded by NSF Astronomy Directorate
• Data collected from people who were in grad school in 2006-07
• Always collected from same group of people
• Collected in 2007-08, 2012-13, and 2015
• Main purpose to document and explain differential attrition by gender
• Has other data available, such as employment sector and field
Employment Sectors, 2012-13

<table>
<thead>
<tr>
<th>Sector</th>
<th>Never Postdoc</th>
<th>Completed Postdoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>University</td>
<td>47%</td>
<td>61%</td>
</tr>
<tr>
<td>Federal agency (not lab)</td>
<td>4%</td>
<td>10%</td>
</tr>
<tr>
<td>Observatory</td>
<td>3%</td>
<td>9%</td>
</tr>
<tr>
<td>National lab</td>
<td>4%</td>
<td>8%</td>
</tr>
<tr>
<td>For profit</td>
<td>19%</td>
<td>6%</td>
</tr>
<tr>
<td>Non-profit</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>UARI</td>
<td>4%</td>
<td>1%</td>
</tr>
<tr>
<td>Government contractor</td>
<td>5%</td>
<td>1%</td>
</tr>
<tr>
<td>Two-year College</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>Other</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Previous slide listed some non-academic job “flavors”...

• National lab (NASA centers, LLNL, NIST, ...)
• Federal agency (NASA headquarters, DOE, ...)
• Science Policy (Dept of State, AAS, AIP, ...)
• Industry
 • Aerospace (Lockheed, Ball, TRW, ...)
 • Imaging (many, many companies...ask anyone at RIT’s CIS)
 • Data Science (again, many companies...Amazon, Google, Netflix, WarnerMedia, ...)
Example: how astrophysics skills translate to a career in data science (courtesy Jonathan Foster*)

* Astrophysics PhD; now Senior Director of Quantitative Research, WarnerMedia Applied Analytics

<table>
<thead>
<tr>
<th>General Skills</th>
<th>Specific Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model data</td>
<td>Hierarchical Bayesian modeling</td>
</tr>
<tr>
<td>Write and maintain Python code</td>
<td>Time series analysis</td>
</tr>
<tr>
<td>Advise “students”</td>
<td>Image analysis techniques</td>
</tr>
<tr>
<td>Keep up with the literature</td>
<td>Natural language processing</td>
</tr>
<tr>
<td>Attend a lot of meetings</td>
<td>Network analysis</td>
</tr>
</tbody>
</table>
“HOW TO BECOME A DATA SCIENTIST BEFORE YOU GRADUATE”

http://berkeleysciencereview.com/how-to-become-a-data-scientist-before-you-graduate/

DATA SCIENCE SKILLSET

- **Hacking Skills**: Necessary for working with massive amounts of electronic data that must be acquired, cleaned, and manipulated.
- **Math and Statistics Knowledge**: Allows a data scientist to choose appropriate methods and tools in order to extract insight from data.
- **Substantive Expertise**: In a scientific field is crucial for generating motivating questions and hypotheses and interpreting results.
- **Traditional Research**: Lies at the intersection of knowledge of math and statistics with substantive expertise in a scientific field.
- **Machine Learning**: Stems from combining hacking skills with math and statistics knowledge, but does not require scientific motivation.
- **Danger Zone**: Hacking skills combined with substantive scientific expertise without rigorous methods can beget incorrect analyses.

Data science, due to its interdisciplinary nature, requires an intersection of abilities: **hacking skills**, **math and statistics knowledge**, and **substantive expertise** in a field of science.
Career development workshops/sessions at AAS 233 (Seattle, WA; Jan. 6-10, 2019)

- **Beyond the Academy workshops**
 - Career Hour: Transitioning to a Career in Data Science (Panel Discussion)
 - Round table discussions (w/ “career domain” reps)
 - Participants will be invited to to choose among -- and circulate among -- the “career path rep” tables as they see fit, sitting down to ask questions or just listening in to the conversation. The first hour will feature the round table event, followed by a 1-hour recruiting event, where job seekers can sign up for interviews with recruiters.
 - Career Fair (follows round table)
 - Career Consultant sessions (organized/hosted by Alaina Levine, Quantum Success Solutions)
 - One-on-One Career Consultations (20-minute Sessions)
 - Careers 101: Career Planning Workshop and Panel for Graduate Students and Postdocs
 - Career Hour - Interviewing: What You Need to Do Before, During, and After to Get the Job
 - Networking for Nerds: Create Your Dream Career In Real Life (IRL) and via Social Media
 - Introduction to Software Carpentry (two-day workshop)
 - How to Build and Publish a Website in 60 Minutes or Less: Developing Crucial Web Development Skills to Meet Professional and Academic Needs in the Digital Age
 - Proposal Writing: Using NASA ROSES as a Template for Success