Science News

The Path To Pure Polynitrogen—New Compound A Crucial Step Toward Revolutionary Energy Storage

The path to pure polynitrogen—new compound a crucial step toward revolutionary energy storage

New work from an international team led by Carnegie’s Alexander Goncharov synthesized a new material composed of six nitrogen atoms in a ring, bringing scientists one step closer to creating a long-theorized, pure-nitrogen solid that could revolutionize energy storage and propulsion. 


Direct images of young exoplanet points to controversial disk instability theory

Researchers directly imaged the newly forming exoplanet AB Aurigae b over a 13-year span using Hubble’s Space Telescope Imaging Spectrograph (STIS) and its Near Infrared Camera and Multi-Object Spectrograph (NICMOS).

A recent study published in Nature Astronomy may have revealed the first visual evidence confirming the formation of a gas giant planet via the controversial disk instability method, which was first proposed by Carnegie’s Alan Boss in 1997. 


Revealed: Water Determines Magma Depth. Finding Upends Long-Held Understanding Of Volcanic Storage.

A view over Fisher Caldera in the foreground, looking out to Shishaldin Volcano, at a distance in 2015. The gray and gloomy tone of the photo is characteristic of the weather in the Aleutian Island. Photo is courtesy of Daniel Rasmussen of the National Mu

New work from a Smithsonian-led team, including Carnegie’s Diana Roman, revealed what could be the most-important factor controlling the depth at which magma is stored under a volcano, upending long-held theories about the molten material’s upward journey through the Earth’s crust. Their findings—which could inform the creation of detailed models that more accurately forecast volcanic eruptions—are published in Science.


Discovered: An Easier Way To Create Flexible Diamonds

Cover Art.png

Recently, a team of scientists led by Carnegie’s Samuel Dunning and Timothy Strobel developed an original technique that predicts and guides the ordered creation of strong, yet flexible, diamond nanothreads, surmounting several existing challenges.  The innovation will make it easier for scientists to predict and synthesize the nanothreads—an important step toward applying the material to practical problems in the future. The work was recently published in the Journal of the American Chemical Society.


Press Release: Martian meteorite’s organic materials origin not biological, formed by geochemical interactions between water and rock

The Allan Hills 84001 meteorite courtesy of NASA/JSC/Stanford University

Organic molecules found in a meteorite that hurtled to Earth from Mars were synthesized during interactions between water and rocks that occurred on the Red Planet about 4 billion years ago, according to new analysis led by Carnegie’s Andrew Steele and published by Science.  


Tracking down the forces that shaped our Solar System’s evolution

Meteorite Slice

Meteorites are remnants of the building blocks that formed Earth and the other planets orbiting our Sun. Recent analysis of their isotopic makeup led by Carnegie’s Nicole Nie and published in Science Advances settles a longstanding debate about the geochemical evolution of our Solar System and our home planet.